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RUNNING CRACK IN AN INCIDENT WAVE FIELD
E. P. CueN and G. C. S

Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015

Abstract—Steady-state diffraction of stress waves by a semi-infinite running crack is considered in this study.
In conjunction with the principle of superposition, an exact solution is obtained by using a method based on the
Wiener—-Hopf technique. As in the static case, the dynamic stresses possess the familiar inverse square-root
singularity at the crack tip. The stress-intensity factors, however, are found to depend on the incident wave length,
angle of incidence, Poisson’s ratio of the elastic solid and speed of crack propagation. The stress-intensity factor
serves as a useful parameter in studying elasto-dynamic crack problems since it can be associated with the rate
at which elastic and kinetic energies are released by the crack. Ductile fracture is studied by adapting the Dugdale’s
hypothesis. The length of the plastic zone is determined and the influence of the speed of crack propagation is
displayed graphically.

1. INTRODUCTION

UNDER dynamic loading, the action of external forces is transmitted to all parts of the
structure in the form of stress waves. At the crack, the waves are refracted and reflected
causing a high stress elevation near the crack tip. This may lead to gradual crack extension
and perhaps result in the ultimate failure of the structure.

The scattering of waves by cracks of various geometries has been the subject of many
past investigations. Ang and Knopoff [1, 2] have treated the problems of a finite crack
subject to anti-plane shear, compression and in-plane shear waves. Their results, how-
ever, are valid only for low frequencies and large distances from the line of discontinuity.
Using an integral transform technique, Sih and Loeber [3-6] were able to furnish near-
field solutions to a class of diffraction problems with various crack configurations. Transient
problems of a crack subject to impulsive loadings were considered by Baker [7], Ravera
[8], Embley [9] and Thau and Lu [10, 11]. Baker treated the case of a semi-infinite crack
propagating at constant velocity after it had appeared suddenly in the stretched elastic
body. Ravera, Thau and Lu considered the problem of a double-ended crack subject
to in-plane and anti-plane impact loadings. The axisymmetric problem of a penny-shaped
crack influenced by step loadings was solved by Embley. Based on a method by Evvard
[12] and Kostrov [13], Achenbach [14-17] solved a class of transient elasto-dynamic crack
problems. The salient feature of his work is the presentation of the rate of energy balance
in the fracture process.

Another type of elasto-dynamic crack problem has also received much attention. This
is the type of problem of a crack propagating under the influence of uniform loading con-
ditions. Yoffe [18] studied the case of a constant length crack propagating through an
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infinite elastic medium. The corresponding semi-infinite crack problem was treated by
Craggs [19]. The more realistic problem of a crack whose tips are expanding in opposite
directions was solved by Broberg [20] and Craggs [21]. The axisymmetric problem of an
expanding penny-shaped crack was considered by Atkinson [22] and Kostrov [23].

Although much has been done in the foregoing problem areas, an understanding of
crack propagation induced by dynamic loading conditions has not yet been achieved.
Certain information has been given by Janhanshahi [24], who solved the problem of
diffraction of horizontally polarized shear waves by a semi-infinite crack extending uni-
formly under the condition of anti-plane strain. The same problem with a finite length
crack has been studied by Sih and Loeber [25]. These problems correspond to Mode 111
problems in the static theory of fracture. The corresponding in-plane problems are con-
sidered to be more significant since most structural members are subjected to oscillating
loads undergoing tension-compression cycles. However, the analysis is considerably more
difficult since both plane compressional and vertically polarized shear waves are developed
after either type of incident wave is scattered from the crack. In addition, Raleigh surface
waves are generated along the crack surfaces. Mathematically, instead of one wave equation
to be solved for Mode I1I problem, two wave equations must be considered for the in-
plane problems.

In this paper the interaction of stress waves with a semi-infinite running crack under
either the plane strain or the generalized plane stress condition is considered. Employing
the principle of superposition and a method based on the Wiener—Hopf technique, an
attempt is made to obtain an exact solution to the stated problem. The dynamic stress-
intensity factor, the energy release rate and the crack surface displacement will be ex-
pressed in terms of crack speed, angle of incidence and Poisson’s ratio of the elastic solid
and will be displayed graphically to show the effect of these parameters.

Ductile fracture is included in the present study by the application of Dugdale’s
hypothesis [26] which has subsequently been extended to dynamic problems by Goodier
and Fields [27], Atkinson [28], Kanninen [29] and Embley and Sih {30]. The attractive
feature of this model is simplicity, and although it does not provide a satisfactory ap-
proximation to the stress distribution, it appears to be useful in determining such gross
characteristics as the length of the plastic zone. Other flow characteristics of the material
such as strain hardening, strain rate, etc., may also be included in the Dugdale model. A
study of this kind has recently been carried out by Kanninen, Mukherjee et al. [31] who
investigated the influence of the dynamic flow properties of metals on the speed of ductile
crack propagation.

2. FORMULATION OF THE PROBLEM

Field equation and input waves

Consider the propagation of elastic waves which vary harmonically in time and are
applied in the X Y-plane containing a through crack which is semi-infinite in length and
is extending along Y = 0 at a constant rate v. Both compressional (P-) and shear (SV-)
waves arise in the plane and the resulting displacement and stress fields can be expressed
in terms of two scalar functions ®, and @, each of which depends on X, Y and ¢. The
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rectangular components of the displacement and stress fields are:

21 T2
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in which 4 is the Lame constant and g stands for the shear modulus of elasticity.
Substituting equation (2.1) into the equation of motion of an isotropic elastic solid,
the following wave equations on ®, and @, are obtained:

1 0@,

VZ(D"—C_‘% ET == 0, k = 1, 2 (22)

In equation (2.2), C, and C, are respectively the velocities of compressional and shear
waves in an infinitely extended elastic medium and they are given by

A
S e
p P
(1-2v)/2(1 —v), plane strain
C? = Cj/C} = { . (2.3)
(1-v)/2, generalized plane stress

where p is the mass density and v is the Poisson’s ratio.
Define two moving coordinate systems by

t=t, X, = X —ut, W = S.Y, k=12 (2.4)
where
S, = \/(1 —-M}) and M, =v/C,. 2.5

In equation (2.5), M, and M, are known as the Mach numbers. With respect to the moving
systems, equation (2.2) becomes
o*®, 0’0, 2M, 2*0, 1 &%,
— =0, k=12 2.
ox2 T a2 T C.SZax. 00 CISI o (26)

in which ®, is now a function of x;, y, and t. Input waves from infinity in the fixed co-
ordinate system may be written as

O = @, exp{ —iA[X cos O, +Ysin®,]—iQ}, k=1 or 2 27
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in which
Q = circular frequency,

A, = — = wave number,
‘ _ (2.8)
©, = angle of incidence,
¢, = wave amplitude.
In the moving systems, equation (2.7) takes the form
D = Pixxs Vi) eXpiMidieX, — ot} (2.9)
where
O = B exp{ —idylx, cos 6, + y, sin 0,1},
M 0 S
cos B, = ﬂi, sin 0, = ~sin @, ,
Otk %
(2.10)
o, = 14+ M, cos O, Ak = #ak = apparent wave number
k
o, = 4.

Guided by the above as well as by the objective of eliminating the mixed derivative
term in equation (2.6), assume the solution to the governing equations as

G = dulxi, Vi) exp{iM A, x, —iw;jt} (2.11)
with
" .
Dy = Ka, k=12 2.12)
Si

where j = 1 or 2 corresponds to the type of input wave and k = 1 or 2 corresponds to the
two wave potentials. In the subsequent discussion it is to be understood that the subscripts
jand k have the above meaning.
Substitution of equation (2.11) into equation (2.6) yields
Py ¢y

+
oxt = ox}

which is the Hemholtz equation.

+A505 =0, k=12 (2.13)

Scattered-wave potentials

The total wave field may be taken as the linear sum of the displacement potentials of
the incident and scattered waves as

O, =0P+0P, k=12 (2.14)

Since the incident wave field is already a solution to the wave equation, the main analysis

lies in the determination of the scattered-wave potentials @, k = 1, 2. In view of equation

(2.11) the scattered potential ¢ in the moving coordinate system is governed by the
Hembholtz equation

2 1(s) 2 4(s)

0*¢ Jjk +6 ¢ Jjk

axi "oy AR =0 k=12 (2.15)
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where
$R >0 as (xZ+y) - oo,

The same general relationship applies to the total displacement and stress fields.
Equation (2.15) can be solved by applying a Fourier transform and the result is

B0 v = 57 f WO exp{—ilx—vin] 46, jk =12y, 20 (216)
in which A4,(¢) is the unknown to be determined. The branch cut of the functions
Vi = (2= At = —i(A5—E&? (2.17)

has already been discussed by Noble [32]: therefore, no additional comment will be
made here.

At this point, it is convenient to define

[Ux] [ue]
Vy v,
ox | =|o, exp{iijljjxs —iwjt} (2.18)
oy o,

Loxy] | )

such that in dealing with (u,,v,, 0,,0,,0,,) the same exponential factor is suppressed.
Using the derivatives of ¢, and the notation

A, C.
B = M-l.-( Lk _’), jok=1,2 (2.19)
Jk i*ji }-jj Ck

the expressions for the displacements and stresses become

1 =

ug:S) = 2 J_ {— l(é - M] jj)Ajl(i) eXp( y]lyl) SZ'VjZAjZ(‘f) exp( _ijys)} eXp( - léx) di,
] pw

U;S) = 2_7rf {—Sl'J’lep(f) CXP(—?nJ’l)"‘i(é—M, ”)Ajz(f) exp(~— Yi2Y2 }exp —i¢x)dé,

P B 1 1
% ael Al (1))

x Ajl(é) exP(‘?jlYl)'*'iSszz(é _Mj'ljj)AjZ(é) exp( ‘?jzyz)} exp(—i¢x)d¢,

O';S) 1 ¢
Sk e ]

xAjl(é)CXP(—Vj1Y1)_iS2V12(é M,'IN)Ajz(f)exP(_')’szh)} exp(—iéx)dg,

(2.20)

O-(S)

B = o | S MDA expl—,u00) + 353+ (6 M)A (0

x exp(—7y,,¥2)} exp(—iéx)dé,  j=1,2
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where
Y = (€= B)? —AR]E (2.21)

Note that in deriving equations (2.20) the relation x; = x, = x has been used.

Boundary conditions

For a traction-free crack surface, the total normal and shear stresses must vanish on

L, the region the crack occupies, i.e.,
ai(x, 0)+o(x, 0) = 0, xelL
(2.22)
o (x, 0)+a¥)(x, 0) = 0, xel

from which the boundary conditions of the scattered-wave problems may be established.
For convenience, the problem will be split into two parts, namely, that of finding the
solution of equation (2.15) for the following conditions:

Case A.
v(x, 0) = 6¥)(x,0) = 0, x¢L 223
o9(x,0) = —aPx,0);  o(x,00=0, xeL '
Case B.
u(x,0) = 6¥(x,0) = 0, x¢L
(.00 = # (2.24)

o9(x,0) = 0; of) = —al)(x,0), xel.

It is evident that the stress solutions for Case A and Case B are even and odd in y,
respectively ; consequently, the former case will be called the symmetric problem and the
latter the skew-symmetric problem. The complete solution to the original problem can be
obtained by superposition of the solutions for the two cases.

Case A. Symmetric problem. The normal traction corresponding to the incident wave
fields can be written as:

Oix 0
% ;);’ ) Piexp(—ii;xcosf), j=1,2 (2.25)
where
2 1 R $2
P, =i - 2—C2—1 (M, —cos8,)"— 7 sin2 0, &, (2.26)
corresponds to the incident P-wave, and
P, = —S82A2,sin 6,(M,—cos 0,)¢, (2.27)

to the incident SV-wave. Define a function 4(¢) through

(S22 +(E—M;4;)%)
T S U N ey o

Ajz(é) [(5_MJ 11)2 S%VJZZ] (é M ' (228)

J JJ)
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Making use of equations (2.20), (2.28) and boundary conditions (2.23), a set of dual integral
equations is obtained :

—2}7_r Jt: AL exp(—ilx)dé = 0, x¢ L

O (2.29)
Zf_wfj(f)Aj(é) exp(—i¢x)d¢ = —Pjexp(—ii;xcosf), xelL
where
1 2 S% 2 2 2 2
SO =31 5 HE=MA)" =53 | [(€— M A" + Sayja]
- 2S152Vj17j2(f*—Mj/1,~,~)2}/Sl)’jx[(é ~M A7 —Sh] (2.30)

Case B. Skew-symmetric problem. The shearing stress corresponding to the incident
wave fields are

g_‘;;;%()_) = Q; exp(—ii;x cos 8)), j=12 (2.31)
where
Q, = S,A},sin6,(M;—cos 0,)¢, (2.32)
corresponds to the P-wave incidence, and
0, = $1%,[(M, —cos 8,)> — §%sin? 8,]¢, (2.33)

to the SV-wave incidence.
Making use of equations (2.20) and (2.31) and replacing the unknowns A; by C;,
Jj» k = 1,2, boundary conditions (2.24) render

1 a

= f CAOexp(—itx)dE =0, x¢L

1 : o (2.34)
z_nf AAOCE) exp(—igx) A& = —Qexp(~id;xcosh),  xeL

in which
2 1 2 S% 2
q8)=<-C ﬁ—l (E—M ;i) —ﬁ)’n
x[(&— Mj'ljj)z + S%?fz] - 2S132)’j17’jz(f - Mjljj)z}/[(f - Mj/ljj)z - S%yfIJSZVjZ- (2.35)
In equation (2.34) the new unknown C(¢) is defined by
(E~M;A;)
{le(é)} 2C2Cj(£) JriF

Cil® ~ E—MA)—5H3] _(12C*) [ - M2;)* — Sty ]+ (E - M) o (236)
! Sz?jz
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The objective in mind is to solve the pair of dual integral equations in equations (2.29)
and (2.34) for the unknowns A (¢) and C (), respectively. Once this is done, all the stresses
and displacements can be calculated through equations (2.28), (2.36) and (2.20).

3. SEMI-INFINITE CRACK PROBLEM

Solution to dual integral equations

Following the formulation in the last section, the problem will be separated into
symmetric and skew-symmetric parts and each will be discussed individually. The
geometry of the problem is shown in Fig. 1.

Case A. Symmetric problem. For this case, equations {2.29} have the form

%nfww A{S) exp(—iéx)d = 0, x>0

3.1
51; J_ ; SAOALE) exp(—iéx)dE = —Pjexp(—id xcosb),  x <O.

Y y
;i Wave Input
v
8,
o) X, x
vt

F1G. . Geometry of the semi-infinite running crack.

The solution to this set of dual integral equations may be obtained by a method based
on the Wiener—Hopf technique. Define a new function B{¢) through

Aj(f) = 51'}’1131'(5) == {[(1 '*‘Mx)(é“Mj)»jj)”S%)'n]
X [(1—M )&= M)+ 812,11 BLO). (3.2)
Making use of equation (3.2), equations (3.1) render

1 e o)
| sunBloem-ignde =0, x>0
¥ (3.3)

21_7: r FAEBLE) exp(—itx)dE = —Pjexp(—idjxcosf), x<0

where

f}{f) = Sx'?jlf;(f)- (34)
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The second of equations (3.3) is satisfied if

& Ul](é) 1

5
2 Ujfoy) E~o; (3:3)

JAOBLS) = +

where
K,;= —2nP;,  a;= Aijcosb; (3.6)

In equation (3.5), U, {¢) is a function free from zeros and singularities in the upper {-plane
except at infinity where it is required only to be of algebraic behavior. That equation (3.5)
is a solution to the second of equations (3.3) is readily verified by completing the path
from — o0 to co by a semi-circle of infinite radius in the upper ¢-plane, as shown in Fig. 2,
and then applying the residue theorem and Jordan’s Lemma. In Fig. 2, the path of inte-
gration is chosen to avoid the possible branch points and is indented below the pole

Im(§)
///’ \\£<0
P ~
// \\\\
/ AN
7/ ~
/ N
;‘ \\
" - s b Re(€)
\ - a ]
\ X\ ji-Bj) / ()\/,+le) /
\ /
\ /
N /!
~
\\ ///
Se -~
'\\\ ’/
el NS Rt - x>0

F1G. 2. The cut &-plane.

¢ = ;. Similarly, the first of equations (3.3) can be represented by
$17;1BL&) = L {9 (3.7)
where L, {{) is the counterpart of U, {{) in the lower half {-plane. Eliminate B{(¢) from
equation (3.5) and equation (3.7) and get
L (9 _ _§__I_<ﬂ 1 S1%ir
U, /%) 2mi Uyfa) (E—a) f{E)

To factor the right-hand side expression into the product of a U-function and an
L-function, let

(3.8)

2M3 F1%)
F = 2 A = F. A
Bty ssic-aes O e
in which £, and —¢, are the only zeros of f{{) and they are:
_ 5345 _ 83455

with Cy being the Rayleigh surface velocity. For the solution of the roots of the function
S1&), reference is made to Appendix A.
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In view of equation (3.9), equation (3.8) assumes the form

Lifd) . K, {[(1—Ml)(f—szljj)+Sflj1]*}{[(1+M1)(f——MjAjj)~Sfi,-1]%} il

Ui Ugfw) (E+ E)F (&) (E—a ) E—EDF,(é)
where
, 1 2M3K,;

K= misstr—assy (3.12)

Hence, a solution is
3 (E+E)F;(8)

Uikl = (oM = My, + 570,
Lo = Jkula =M )~ M)+ ST, TH [0+ M )& —M2;)— ST, ] (3.13)

(aj‘*‘éz)Fju(aj) (é_aj)(é—fl)FjL(é)
There remains the problem of the factorization of Fi{{) into Fj;(¢) and Fy(E). In order
to do so, define
G{s) = log Ffs), hence F{s) = exp{G{s)}. (3.14)
If G(s) can be decomposed into the sum
G{s) = Gpls)+ G uls)

then )
Fiy(s) = exp[Gyuls)] and  F(s) = exp[G(s)].

Since F(s) is analytic everywhere in the {-plane except at the cuts (B;;+4;;) < Re(s)
< (Bj2+4j2), Im(s) = 0and —(4;; —B;;) < —Rels) < —(4;, —B;;), Im(s) = 0,and Fi(s)— 1
+0(1/s) as |s| = co. Hence G(s) is regular everywhere in cut s-plane and Gs) - 0(1/s) as
Is| = o0. Therefore, by Cauchy’s integral formula

Gs) = — J 50 4. (3.15)
2ridepee, 28

where the contours C; and C; in the z-plane are shown in Fig. 3. Equation (3.15) can
further be written as

1 Gilz)
Civ.als) = 2ni J‘C&CLZ—S dz

Im(2)
c, c,
{ } “ 1 Re(2)
-\ =B - jrﬁ/, )] (Bjt" X j'!) (sz* A /2)

Fic. 3. Contour of integration in the z-plane.
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1 log F{z)
Fiyls) = exp {% L %dz}

1 log F
Fi(s) = exp{zn J‘ ozg—iz) dz}.

Assume s doesn’t lie on the cut for the moment and for a principal branch of the
logarithmic function, equations (3.16) become

1 Bt ie) dz
FjL(S) = eXp{R—J AJ'(Z)—‘-“‘}
{

Biit A1) zZ—8
1 (Bj2+Aj2) dz
Rt = el [ a0
(ﬂ;l +'l]l)

2515‘2{[(2—181'1)l —'1?1][12 (Z BJZ)Z }*(Z , ,,)2
{[(S3/2C% W} —(1/2C* = D)z = M A7) [z — MjA;))* + S5y 7]}
When the point s approaches the branch cuts, the integrals defining F;; and Fj; become

singular. However, these integrals are obviously never singular simultaneously. Thus,
F;y and F;; can be calculated by writing

M3 f49
[(1+53)* —48,8,] €=+ E)F )

Equations (3.13) and (3.19) have thus completed the solution to the symmetric problem.
Case B. Skew-symmetric problem. Following the same procedure as in Case A, define

Ci8) = 8,7;2D &) = {[(1+ M )(E—Md;)—53;,]
X (1= M) (& —M;d;+ 832,12 D Q) (3.20)

i

and consequently

{(3.16)

(3.17)

in which

Afz) = tan™!

(3.18)

Fiuals) = (3.19)

and then equations {2.48) become

1 o

2| saabfoem-ignde =0, x>0

1 7 (3.21)
e J: SAOD{E) exp(—iéx)dé = —Q;exp(—id;x cos b)), x <0

Without going into details, this set of dual integral equations can be solved by exactly
the same procedure as in Case A and the result is

(E+E)F; ()
[(A=M)E—-MA;)+S34,,1F
Ko (1 =My)(o;— M)+ 8341
(o;+&5)Fp(2))
(A+M)0E—M;2;)— 83,1}
E—a)E—EDFLE)

UZj(é) =

$:7;2DA8) = L,{8) = +

(3.22)
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in which

. 1 2M3
K= S i sr—4s,5,) @) (3.23)

and the functions U,; and L,; have the same behavior as U,; and L, ;, respectively.

Singular stresses around the moving crack tip

The analytical purpose of fracture mechanics is to study the state of stress immediately
around the crack tip. This provides the connection between the stresses which control
crack propagation and the applied loads. In the ensuing discussion, the dynamic stress
fields for Case A and Case B will be examined separately.

Case A. Symmetric problem. Combining equations (3.2}, (3.7) and (3.13) yields

kil — M)ty — MAj) + S34;, 7 [+ M )(E— Mdy) — 81451

3.24
@t E)F ) E—) (e~ & Fynl) (5.24)

Aj(é) =+

The singular behavior of the stress components for the scattered waves at the crack tip is
due to the divergence of the improper integrals around x = y = 0 in equations (2.20).
This divergence is contributed by the behavior of the corresponding integrands as & — .
Making use of equations (2.28) and (3.24), asymptotic expansions of the integrands ap-
pearing in equations (2.20) for large values of ¢ lead to

o = 4 j {(145H)(1 - S3+ 281 [E* exp(— S, &y —iéx)
0

—i& Y exp(— S, Ey+iéx)]—48,S,[E Yexp(— S,Ey—iéx)

—i& " exp(—S,&y+iéx)]} dE,

6(‘5}:}1[» — {1+ SHE Fexp(—S Ey—ilx)—iE Yexp(—S,Ey+ifx)]

} ° (3.25)
+48,8,[E Fexp(— 8,8y —itx)— it~ Fexp(—S,Ey+ix) dé,

o) = 4.25 <1+S)f (= D{[E™* exp(— S, Ey— i&x)

— i Fexp(— S8, &y +ilx)]—[E P exp(— S, &y —idx)
+i¢ exp(— S, &y +iéx)]} &
where

_ﬂk;[(aj F) ”)+(1+M1))“;1]%

3.26
2nM 3o+ &) Fja) (3.26)

A =

Since the stress field of the incident waves are non-singular, the unbounded contri-
butions to the total stress field near the origin are precisely equal to those of the scattered
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waves. Carrying out the integration and rearranging the constant terms yield the following:

k 1
0 = s S T ST G O DU = S+ 25DS(5) 45,5, /(5)) + 0
=2 2

ky

» = 48,8, —(1+ 87 (2r }%{4Stszf(sz) (1+83)* £ (S} +0(1), (3.27)

(o3

o = S (1S S SD B8 el o)
where
FAS)+8%(S) = sec¢ . (1+S] tan® ¢)7* (3.28)
fHS)—gXS) =secg.(l+S}tan ¢) ™!
and
r={(x*+y%:; ¢ =tan" l(i)) ) {(3.29)

The parameter k, in equations (3.27) is defined by

+
- (g)&{{éﬁ; A+ MDA, exp{gi) (3.30)

n (o;+E)F el )
in which
o; = +2uP;. (3.31)

Case B. Skew-symmetric problem. Following the same procedure as in Case A, the
singular portion of the stress field can be found as

k, l
* T 45,8, - (1+ 83 (2ryF

g 28,{(1+82)g(S,)— (1 - 52 +28Dg(S,)}

ks

% = 45,8, — (1 £537 Oor )*282(1+sz} g(51)—g(S2)}, (332)
o = 5SS k?usﬁ’ G )%{45 S8~ (1+ SHE(S,)}
in which
k2 = (i)%{@ @ féj){i j(ﬁz}}}g e"p(;i) G339
and

1= +2uQ;. (3.39)
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In view of equation (3.23} the actual stress components oy, gy and oy, can be found

from o,, 0, and o,, by modifying the factors k; and k,. Let K| and K, denote these modi-
fied factors and they are taken to be the dynamic stress-intensity factor:

24+
K, =k exp(iMd;;x —iw;t) = (;[)

[(o;— M) +(1+ M )4 )
* (Ot]-i-fz)FjU(ocj) exp{ IiM]A'JJx+4 :l} (3.35)

Y
z

K, = k, exp(iMd;;x —iw;t) = (?—i)

{(a} F ;})+(1+M2 12}% { [:Ml }}
X (a;+£2} jU(a}) T exXp H ”x+4 .

The inverse square root of r stress singularity is found to be identical to that of stationary
crack problem [33]. However, the angular variation of the stresses in ¢ around the crack
tip is distorted by the speed of crack propagation. In addition, the intensity factors K,
and K, differ significantly from the static solutions since they fluctuate in time and are
proportional to the circular frequency, amplitude of input wave, angle of incidence and
speed of crack propagation.

As v — 0, the stresses become

oy = ki jg{l—-sinfésing(—ﬂ +0(1)

(2r )‘} 2 2
oy = é(; cos é[l +sin % sin %] +0(1) (3.36)
Oxy = (f; cos%sm%cos %6514_0(1)
for Case A and
Oy = —(;(Ti sin §[2+cos %2 cos 52?} +0(1})
oy = (;(; sm?cos%cos ~3«§3+0(1) 3.37)
Oxy = (;(;cosé[l—sinfg—sinégz:l+0(1)

for Case B; where

2\ [A;cos ©;+ A, Jio* _
E: ANC 3 i i
: ( ) [A;c0s ©;+ Ay(C,/CRIF il A-cos@,-)exp 2!

(3.38)
K = 2* [Ajcos ©,+ A,k X
2 [A;cos ©; +A2(C2/CR)]F (A;cos © )
1™ 422 - AHAR -2 dz
FYls) = exp{; L; tan ! G i A%;z 2+S}. (3.39)
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In equations (3.38), ¢ ¥ and t} are defined as the value of ; and 7; as v — 0, respectively.
Thus, K¥ and K¥ denote the strength of the singularities near the crack tip for a stationary
crack subject to the action of input stress waves. Adopting the criterion in the theory of
brittle fracture [33], K¥ and K% may be regarded as the dynamic stress-intensity factors
the critical value of which are functions of material property and can be measured ex-
perimentally to determine the point of incipient fracture.

The influence of the crack propagating speed upon the K, factor can best be illustrated
by a plot of K,/K¥ vs the velocity ratio v/c,. For a P-wave incident on the crack in the
state of generalized plane stress, Fig. 4 shows the behavior of K /K7 against v/c, for various

v=0.25

0.8

06

04

02 Generalized plane stress

Normalized stress-intensity factor K,/ K’

I I l I
0 ol 0.2 0.3 04 05 06

Velocity ratio V/c,

FiG. 4. Variation of K,/K} vs V/C, for different ®,—semi-infinite crack and P-wave incidence.

angles of incidence. The value of K,/K¥ decreases as v/c, increases and falls to zero as
Rayleigh wave speed is reached. In Fig. 5 the variations of K,/K¥ vs v/c, for a P-wave
incident normally on the crack with different Poisson’s ratios are presented. The value of
K, increases as the compressibility of the material is increased and all the curves drop to
zero as v reaches the Rayleigh wave velocity, which is the root of the denominator
[45,S,—(1 + S3)?). This same behavior has also been found by [34], among others, for a
propagating crack subject to uniform tension at infinity.

Let the crack be excited by SV-waves and consider a state of generalized plane stress.
As is evident from Fig. 6, the variation of K,/K% with V/C, for various angles of incidence
follows the same trend as that of Fig, 4. In Fig. 7, K, decreases when the Poisson’s ratio is
decreased, as it should for the skew-symmetric problem.

Also, the stress-intensity factor can be influenced by the input wave amplitude. The
K-factors will increase as the wave amplitude is increased.
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F1G. 5. Variation of K,/K% vs V/C for different v—semi-infinite crack and P-wave incidence.

Crack opening displacement

If a medium containing a crack is subjected to the action of stress waves, the inter-

ference which the crack surface experiences may alternate in sign depending upon whether
the incident field is tensile or compressive. This will cause the opposing crack surfaces to
come into contact and thus violating the assumption of a traction-free crack. Hence, an

Normalized stress-intensity factor A,/k,

0.2

v =0.25

j
Generalized plane stress

[ I | | | | ! R

0.l 0.2 0.3 04 0.5 0.6 0.7 08 09

Velocity ratio v/c,

FIG. 6. Variation of K,/K* vs V/C, for different ® ,—semi-infinite crack and SV-wave incidence.
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Fi1G. 7. Variation of K,/K% vs V/V, for different v—semi-infinite crack and SV-wave incidence.

additional tensile stress field must be added to keep the crack surface separated. The dis-
placement solution of the original problem provides an estimation of the requisite tensile
field.

For the symmetric case, the quantity of interest is the normal displacement

ik (1~ M ) — M)+ S22, .
e 0) = (Jo[t(+éz)(2(ijé F, (Z)); L(locj)'J {[(1+ M) (= M) — 514;,7% exp(—ia;x)
i J JON LN Tl 1 AN
Fj (o)) ,
—[(L+M (&, —M i) —SA; =5 exp(— i€, x)}, x <0 (3.40)
Fu())

The numerical caiculation of equation (3.40) will be carried out for the case of normal
incidence, ®, = n/2. Figures 9 and 10 display the amplitude of V(x, 0) given by equation
(3.40) for several values of M. At low frequencies and close to the crack tip, Fig. 8 shows
that the crack opens like an ellipse in the dynamic case, just as in the static case. But at high
frequencies and away from the crack tip, the multiple interferences on the crack surface
introduce oscillations in these curves as shown in Fig. 9. In order to keep the crack surfaces
from getting into contact, the opening displacement shown by the curves in Fig. 9 should
at least be doubled so that during compression cycles sufficient clearance is provided. As
expected, the maximum value of |uv (x,0)A /6| = 1.06 occurs at M, = 0, the velocity
ratio at which the dimensionless stress-intensity factor is also a maximum. Generally
speaking, at higher crack velocities the peak values of the crack opening displacements
tend to decrease and occur further away from the crack tip.
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Normalized displacement | uVy (x,0)A /o7 |

Normalized crack opening displacement |uV, (x,0) A/c;]
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F1G. 8. Variation of crack opening displacement close to the crack-tip—semi-infinite crack.
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F1G. 9. Variation of crack opening displacement vs distance from the crack-tip—semi-infinite crack.
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F1G. 10. IA| vs £ /0, for different M ,—normal incidence and v = 0-25.

4. DUCTILE CRACK PROPAGATION

Construction of Dugdale’s model

Consider the diffraction problem of a semi-infinite propagating crack travelling at
constant velocity v in an infinite medium. Both stationary coordinates X, Y and moving
coordinates x, y are introduced. The solution will be obtained by employing the Dugdale’s
hypothesis and the assumption that application of a load always produces a yield zone
in the plane of the crack.

Applying the principle of superposition, two sub-problems are created the sum of
which yields the solution to the original problem. These sub-problems are:

Sub-problem A. A semi-infinite crack occupying the space x < 0, y = 0 in the moving
coordinate system is subjected to the action of impinging stress waves from infinity. The
surfaces of the crack are assumed to be traction-free and the stress at infinity can be derived
from the incident wave potentials. This is exactly the problem solved in Section 3. For
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symmetrical loading the near field stresses can be expressed as

= K, 1 2v01 _ Q2 2
% = [48,8,—(1+527] 2 i (14831 =S34251)1(5,) = 45.52/(S); +0(1)
7= b L4818, /(82 (1SS )} +0(1) 41
» TS, S, =1+ 53 1o BT ST @1
o K, ! 28,(1+53){g(S,)—g(S2)} +0(1)

> = 45,8, —(1+ 527 (2r)}

where the stress-intensity factor K, is defined in equation (3.35) and the functions f and g
have been given in equations (3.28).

Sub-problem B. 1In this case, a semi-infinite crack on y = 0, x < 0 extending at velocity
v, is acted upon by running normal stresses — g, on the faces over a length [ behind the tip.
At infinity it is assumed to be stress-free. This problem has been treated by several authors
[19], [36], using the theory of complex variables. Thus, the stresses around the crack-tip
can be written as [36]

K

— 1p 2 Q2 2
o, = a5s 0TSy a L{(1+s )(1—S2+282)f(S,)—45,5,f(S,)} +0(1)
G, = Ky ! 48,5, £(S;)—(1+S2*/(S,) +0(1) (4.2)
Y [48,S,—(1+ 837 (2 2D '
Klp 1 2 Y
c (1+52){g(51)—g(52),-+0(1)

= 7 [48,S,—(1+ 837 (2r ),

in which the plastic intensity factor K, is defined as

K - —;2{00(21)%. (43)

1p
Consequently, the superposition of sub-problems A and B gives rise to the diffraction
problem of a running Dugdale crack.

Determination of the plastic zone size

Since the presence of the yield zone should remove the singularity at the crack tip,
the condition K, 4+ K,, = 0 must be fulfilled. Making use of equation (3.38) and equation
(4.3) the finiteness condition yields the following result:

2 %[(ozj—Mjljls—F(l‘i-Ml)/{“]% 2 N
(E) ot E ) o exp{ (szl“x+4 )} = 7—rao(2l) .

The above expression can be simplified to

Y, 2()¥ (e + &5)Fjule)) (4.4)

09 - (n)%[(aj J ”)+(1+M )111]%

where Z = o;exp{i{M A;;+n/4—w;t]} represent the external load. Equation (4.4) com-
pletely determmes the length of the plastic zone.
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Numerical results have been obtained for the dimensionless quantity IA | as a function
of ¥ /¢, ®; and M, under the influence of incident P-waves. Figure 10 shows the vari-
ations of normalized plastic zone length IA; vs the ratio Y, /o, for several values of M,
under normal incident stress waves. The Poisson’s ratio of the material is taken to be 0-25.
These curves exhibit that the length of the plastic zone decreases as the velocity of the
crack increases. This is in agreement with the observation made by Atkinson [28] in
solving the problem of a symmetrical growing crack employing the Dugdale’s hypothesis.
The plastic zone length reduces to zero as the velocity approaches the Rayleigh wave
velocity which implies that no yielding takes place when the crack is running at Rayleigh
wave velocity. Finally, for completeness the normalized plastic zone length is plotted in
Fig. 11 against the velocity ratio M, for various values of the ratio ) /o,. The angle of
incidence is again taken as n/2 and the Poisson’s ratio of the material is 0-25. The curves
show that the plastic extension is longer at smaller yield stress, a phenomenon which is
in agreement with observation.
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APPENDIX A

Solution for the roots of the function f ().
From equations (2.30) and (3.4) Sf{&) can be written as

{(83/2C*5 —[(1/2C% —1]021[02"'52?,2] 2S132Yj171202

f1o = (A.1)
! [O' —S ‘))12]
here
W o= E-Mj,. (A2)
Making use of equations (2.19) and (A.2), equation (2.21) renders
V;k =o*+2M, A *0— Sz l (A.3)
Upon substitution of equation (A.3) into equation (A.1) it becomes
, (262 —a?)? —40°[(6? — C*a®)(0? —o?)]}
o= [2 p ] (A4)
o
in which
of = ¢ — Sk = (M0 —S34;,)%. (A.5)

The numerator in equation (A.4) can readily be identified as the Rayleigh’s function and
the roots are:

o = ——0 o = 0 (A6)

where Cy denotes the Rayleigh surface wave velocity. Since «*> = 0 are also roots for the
denominator of f(¢), they cannot be roots for the function ().
Consequently, the roots of f{&) are:

o2C3
o = C%R (A7)
or they can be put in the form
(M2¢CR/C2)(6_ij'jj) = S%'ljZ' (A-S)
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AGcTpakT—B pabore MccneayeTcs CrauuMoHapHas AMQPaKLMs BOJIH HANPSKEHHA IMOCPEACTBOM IOJY-
OeCKOHEYHOM, IBUXKYILEHCA TPELMHBI. B MECTE C IPUHIMIIOM CYNEPHO3HUNH, TOJYYAETCA CTPOTO€ PELEHHE
IyTeM IPUMEHEHUSI METOAA, OCHOBAHHOIO Ha cniocobe Bunepa-Xonda. Tak kak 118 CTaTUYECKOTO CyyYas,
IMHAMMYECKHE HaMpsXXKEeHHs oGNajaroT XOpollo 3HAKOMOM 0co6oH TOYKOH OOpaTHO NPOMOPLMOHANBHO
KBaJPaTHOMY KOPHbBKO B KOHLE TPELIUHBE. TeM He MeHee, PakTOPbI HHTEHCHBHOCTH HaNPS)XEHUM 3aBHUCAT OT
IJIMHBI yl1apsroLIel BOJIHbI, yriia naaeHus, ko3d@duuunenra [NyaccoHa ynpyroro TBEpaoro rejia ¥ CKOpocTH
pacnpocTpaHeHus TpelMHbl. PaKTOP UHTEHCHBHOCTH HAIIPSHKEHUI ABJISETCA TOJE3HBIM MAPAMETPOM AJIS
WCCIIEAOBAHUS YIIPYTOAMHAMMKYECKUX 32434 TPELUMHBI, TAK KAK OH MOXeT ObITh COEIUHEHHBIM CO CKOPOCTHIO,
MpH KOTOPOM yupyras M KHHETHYECKas IHEPIUH OceoboxnaroTcsa TpewuHoi. Yccnenyercs miacTuyeckoe
pa3pyuieHue, npucnocobnsas runoresy Jarpemna. Onpenensercs JIMHA MITaCTH4ECKOW 30HBI. Iloka3sbl-
BAeTCA rpadMuecKn BIMSHME CKOPOCTH DACIPOCTPAHEHMA TPELUHUHEL,



